Population
Variance & Standard Deviation
Example
The number of public school teacher strikes in Pennsylvania for a random sample of school years is shown.
9 | 10 | 14 | 7 | 8 | 3 |
We will now find the sample variance and sample standard deviation.
\[\bar{X}=\frac{\sum X}{n}=\frac{9+10+14+7+8+3}{6}=\frac{51}{6}=8.5\]
9-8.5=0.5 | 10-8.5=1.5 | 14-8.5=5.5 |
7-8.5=-1.5 | 8-8.5=-0.5 | 3-8.5=-5.5 |
\((0.5)^2=0.25\) | \((1.5)^2=2.25\) | \((5.5)^2=30.25\) |
\((-1.5)^2\) | \((-0.5)^2=0.25\) | \((-5.5)^2=30.25\) |
\[\sum (X-\bar{X})^2=0.25+2.25+30.25+2.25+0.25+30.25=65.5\]
\[s^2=\frac{\sum (X-\bar{X})^2}{(n-1)}=\frac{65.5}{6-1}=\frac{65.5}{5}=13.1\]
\[s=\sqrt{\frac{\sum (X-\bar{X})^2}{(n-1)}}=\sqrt{13.1}\approx 3.6 \text{ (rounded)}\]